
South East Asian J. of Mathematics and Mathematical Sciences
Vol. 19, No. 2 (2023), pp. 297-310

DOI: 10.56827/SEAJMMS.2023.1902.22 ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

ROUGH IDEAL CONVERGENT SEQUENCE SPACES OF
BOUNDED LINEAR OPERATORS

Shivani Sharma and Sanjay Mishra

Department of Mathematics,
Lovely Professional University,

Phagwara - 144411, Punjab, INDIA

E-mail : shivani.saggi@gmail.com, drsanjaymishra1@gmail.com

(Received: Mar. 22, 2023 Accepted: Aug. 14, 2023 Published: Aug. 30, 2023)

Abstract: In this paper, using the concept of rough ideal convergence in normed
linear spaces, we introduce rough ideal convergence for bounded linear operators.
We also introduce some rough ideal convergent sequence spaces of bounded linear
operators and further investigate and study some inclusion relations of these spaces,
decomposition theorem and algebraic properties.

Keywords and Phrases: Ideal, Filter, Rough Ideal Convergence, Bounded Linear
Operator.

2020 Mathematics Subject Classification: 40A05, 40A35, 40G15.

1. Introduction and Preliminaries
Convergence of sequences has always remained a subject of interest to the re-

searchers. Several new types of convergence of sequences were introduced and
studied by the researchers and named as usual convergence, uniform convergence,
strong convergence, weak convergence, statistical convergence, ideal convergence
etc. In 2001, the notion of rough convergence was first introduced by Phu [22]
for finite dimensional normed linear spaces. It is a new type of convergence which
involves extending the radius of convergence of a non-convergent but bounded se-
quence.

Let (xi) be a sequence in some normed linear space (X, ∥ · ∥) and r be any
non-negative real number. Then (xi) is said to be r-convergent to x∗, denoted by
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xi
r→ x∗, if there exist iε ∈ N such that

i ≥ iε ⇒ ∥xi − x∗∥ < r + ε, ∀ε > 0.

where r and x∗ are called the roughness degree and the r-limit point of the sequence
(xi) respectively. It is easy to see that r-limit is not unique and for r = 0 we get
the classical convergence. The set of r-limit points of the sequence (xi) is denoted
by LIM rxi = {x∗ : xi

r→ x∗}. LIM rxi is bounded, closed and convex.
Phu also introduced the notion of rough Cauchy sequence and investigated the

dependence of LIM rxi on the roughness degree r. He also defined rough limit
points and degree of roughness and studied basic results for finite dimensional
normed linear spaces. Since then it has attracted a lot of interest from various
scholars. This notion has been extended to various spaces like infinite dimensional
normed linear spaces [24], metric spaces, S-metric spaces, cone metric spaces in
[19], [5] and [6].

The statistical version of rough convergence was introduced by Aytar in [2]. In
[4] he defined the concepts of rough statistical cluster point and rough statistical
limit point of a sequence in a finite dimensional normed space and applied these def-
initions to sequences of functions. Recently, in [7] and [8] Demrici et al. introduced
and studied rough I2 statistical convergence and rough statistical φ-convergence.

The idea of ideal convergence was given by Kostyrko et al. in [15] which is a gen-
eralization of statistical convergence. Since then, various authors have investigated
its various generalizations and applications in several spaces [9], [25], [26], [28], [20]
etc. Rough ideal convergence was introduced by Pal et al. in [21] and Dundar et al.
[10] gave the idea of rough I-convergence in normed linear spaces independently.
Furthermore, various other related results were introduced and studied in [2], [17],
[4] and [18]. Various attempts have been made to study the algebraic, topological
and geometrical properties of LIM rxi of rough convergent sequences in various
spaces.

Several applications of statistical convergence and ideal convergence have been
discussed in summability theory and approximation theory in [9], [11], [12] and
[27]. Sequences of bounded linear operators are a common occurrence, often asso-
ciated with problems such as Fourier series convergence, interpolation polynomial
sequences, and numerical integration techniques, as seen in [1], [16] and [13]. In
these scenarios, the focus typically revolves around the convergence of operator
sequences, the boundedness of associated norm sequences, or similar characteris-
tics. Several sequences which are non-convergent in usual sense are rough ideal
convergent. Thus, rough ideal convergence can be studied for the sequences of
bounded linear operators. In this paper, we have extended the notion of rough
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ideal convergence to bounded linear operators using the results in [21]. We have
defined some rough ideal convergent sequence spaces of operators. We have also
studied some properties of these spaces when topologized through a norm and in-
vestigated inclusion relations, equivalent conditions, decomposition theorem and
algebraic properties of such spaces.

We now recall some definitions and results from [21] and [14] that will be used
in the next section of this paper.

Definition 1.1. (Ideal) A non-empty collection I of subsets of non-empty set X
is called an ideal on X if

1. ∅ ∈ I,

2. If A,B ∈ I, then A ∪B ∈ I and

3. If A ∈ I, and B ⊆ A, then B ∈ I.

If for each x ∈ X, {x} ∈ I, then I is called admissible. If I ≠ ∅ and I ≠ P(X),
then I is called non-trivial.

Definition 1.2. (Filter) A non-empty collection F of subsets of non-empty set
X is called a filter on X if

1. ∅ /∈ F ,

2. If A,B ∈ F , then A ∩B ∈ F and

3. If A ∈ F , and A ⊆ B, then B ∈ F .

Definition 1.3. (Filter associated with Ideal) Let I be a non-trivial ideal of
X. The family F(I) = {M ⊂ X : ∃A ∈ I,M = X\A} is called filter associated
with ideal.

Definition 1.4. (Ideal Convergence) A sequence (xi) in a normed linear space
(X, ∥ · ∥) is said to be I-convergent to L, if for every ε > 0, the set

{i ∈ N : ∥xi − L∥ ≥ ε} ∈ I.

In this case, we write I − limxi = L.

Definition 1.5. (Rough Ideal Convergence) Let (xi) be a sequence in normed
linear space (X, ∥ · ∥) and r be any non negative real number. The sequence (xi) is

said to be rI-convergent to x, denoted by xi
rI→ x, if

{i ∈ N : ∥xi − x∥ ≥ r + ε} ∈ I, ∀ε > 0,
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where I is non-trivial admissible ideal on N.

Theorem 1.6. Let r be a non-negative real number. Then a sequence x = (xi)
is rI-convergent to x∗ if and only if there exists a sequence y = (yi) such that
I − lim y = x∗ and ∥xi − yi∥ ≤ r, for i ∈ N.

Let X and Y be any two normed linear spaces. We denote the set of all linear
operators from X to Y by

L(T ) = {T = (Tk) : Tk : X → Y, is linear for each k ∈ N}.

Definition 1.7. (Bounded Linear Operator) A linear operator T : X → Y is
said to be bounded, if there exists a real M > 0 such that

∥Tx∥ ≤ M∥x∥, ∀x ∈ X.

Let B∞(T ) be the normed space of sequences of all bounded linear operators
from a normed spaces X to Y with norm defined by

∥T∥ = sup
k

∥Tk(x)∥.

The space B∞(T ) is a Banach, if Y is a Banach space. Throughout, O and I
represent zero and identity operators, respectively.

Definition 1.8. (Ideal Convergence of Sequence of Operators) Let I be an
ideal. The a sequence U = (Uk) ∈ B∞(T ) is said to be I-convergent to an operator
T , if for every ε > 0, the set

{k ∈ N : ∥Tk(x)− T (x)∥ ≥ ε} ∈ I.

In this case, we write I − limTk = T .

Definition 1.9. Let X and Y be two normed linear spaces. A sequence (Uk) of
operators Uk ∈ B∞(T ) is said to be

1. Uniformly convergent, if (Uk) converges in the norm on B∞(T ) i.e. ∥Uk −
T∥ → 0.

2. Strongly convergent, if (Ukx) converges strongly in Y for every x ∈ X i.e.
∥Uk(x)− T (x)∥ → 0, for every x ∈ X.

3. Weakly convergent, if (Uk(x)) converges weakly in Y for every x ∈ X i.e.
|h(Ukx)− h(Tx)| → 0, for every x ∈ X and h ∈ Y

′
.
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Definition 1.10. (Sequence Space) Any subspace λ of a linear space of se-
quences Λ is called sequence space.

Definition 1.11. (Solid Sequence Space) A sequence space P of operators is
said to be solid (or normal), if (αkUk) ∈ P whenever Uk ∈ P and for any sequence
(αk) of scalars with |αk| ≤ 1, for all k ∈ N and is said to be monotone, if it contains
the canonical preimages of its step space.

Remark 1.12. Every solid space is monotone.

Definition 1.13. (Lipschitz Function) Let X be any non-empty space. A func-
tion f : X → R is said to be a Lipschitz if it satisfies Lipschitz condition,

|f(x)− f(y)| ≤ K|x− y|,

where K is known as the Lipschitz constant.
Throughout this paper, let I be a non-trivial admissible ideal on N and r be a

non-negative real number. We consider the operators Uk, for each k ∈ N from the
normed spaces X = R to Y = R over the field R.

Motivated by the ideal convergence of sequence of operators, we define rough
ideal convergence of sequence of operators.

Definition 1.14. (Rough Ideal Convergence of Sequence of Operators) Let
I be an ideal. A sequence U = (Uk) ∈ B∞(T ) ⊂ L(T ) is said to be rI-convergent
to an operator T , if for r > 0 and ε > 0, the set

{k ∈ N : ∥Uk(x)− T (x)∥ ≥ r + ε} ∈ I.

In this case, we write rI − limUk = T .
Now we introduce the following rough ideal convergent classes of sequences of

operators.

CRI(T ) = {U = (Uk) ∈ B∞(T ) : {k ∈ N : ∥Uk(x)− L(x)∥ ≥ r + ε} ∈ I,
for someL ∈ L(T ), r > 0}, and

CRI
0 (T ) = {U = (Uk) ∈ B∞(T ) : {k ∈ N : ∥Uk(x)∥ ≥ r + ε} ∈ I, r > 0}.

We also denote

GRI
C (T ) = B∞(T ) ∩ CRI(T ), GRI

C0 (T ) = B∞(T ) ∩ CRI
0 (T ), and

CI(T ) = {U = (Uk) ∈ B∞(T ) : {k ∈ N : ∥Uk(x)− L(x)∥ ≥ ε} ∈ I,
for someL ∈ L(T )}



302 South East Asian J. of Mathematics and Mathematical Sciences

2. Main Results
This section is devoted to the study of some algebraic properties of rough ideal

convergent classes of sequences of bounded linear operators, which we introduced
in the previous section. We have also explored Cauchy like criteria for rough
ideal convergent sequences of bounded linear operators and proved some equivalent
conditions.

We first show that the classes of rough ideal convergent sequences of bounded
linear operators are vector spaces over the field of R.

Theorem 2.1. The classes CRI(T ), CRI
0 (T ),GRI

C (T ) and GRI
C0 (T ) are linear spaces

over R.
Proof. First we prove the space CRI(T ) is linear. Let U = (Uk), V = (Vk) ∈ CRI(T )
and α, β be scalars, then for some r1, r2 > 0 and for given ε > 0, there exist some
T1, T2 ∈ L(T ) such that

{k ∈ N : ∥Uk(x)− T1(x)∥ ≥ r1 +
ε
2
}, {k ∈ N : ∥Vk(x)− T2(x)∥ ≥ r2 +

ε
2
} ∈ I.

Let r = max{r1, r2}, then

{k ∈ N : ∥Uk(x)− T1(x)∥ ≥ r + ε
2
}, {k ∈ N : ∥Vk(x)− T2(x)∥ ≥ r + ε

2
} ∈ I.

Let

P1 = {k ∈ N : ∥Uk(x)− T1(x)∥ < r+ ε
2}, P2 = {k ∈ N : ∥Vk(x)− T2(x)∥ < r+ ε

2} ∈ F(I),

are such that P1
c, P2

c ∈ I. Then

P3 = {k ∈ N : ∥(αUk)(x) + (βVk)(x)− (αT1 − βT2)∥ ≤ 2r + ε} ⊇ (P1 ∩ P2) ∈ F(I)

Thus, αUk + βVk is rough ideal convergent, for all scalars α, β and (Uk), (Vk) ∈
CRI(T ). Therefore, CRI(T ) is linear. Similarly, we can prove that spaces CRI

0 (T ),
GRI
C (T ) and GRI

C0 (T ) are linear.
Let us now equip the linear spaces GRI

C (T ) and GRI
C0 (T ) with a norm.

Theorem 2.2. The spaces GRI
C (T ) and GRI

C0 (T ) are normed linear spaces normed
by

∥T∥∗ = sup
k

∥Tk(x)∥.

Proof. Proof omitted.
We now establish a relationship between rough ideal convergent sequences of

bounded linear operators and rough Cauchy criteria.
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Theorem 2.3. A sequence U = (Uk) ∈ B∞(T ) rI-converges if and only if for
r > 0 and ε > 0, there exists a set Nrε ∈ N such that

{k ∈ N : ∥Uk(x)− UNrε(x)∥ < 2r + ε} ∈ F(I).

Proof. Let U = (Uk) ∈ B∞(T ) be rI- convergent for some r > 0 and let T be the
rI-limit of (Uk). Then the set,

Brε =
{
k ∈ N : ∥Uk(x)− T (x)∥ < r + ε

2

}
∈ F(I), ∀ε > 0.

Fix an Nrε ∈ Brε. Then we have

∥Uk(x)−UNrε(x)∥ ≤ ∥Uk(x)− T (x)∥+ ∥UNrε(x)− T (x)∥ < r+ ε
2
+ r+ ε

2
= 2r+ ε

which holds for all k ∈ Brε. Thus, {k ∈ N : ∥Uk(x)− UNrε(x)∥ < 2r + ε} ∈ F(I).
Conversely, suppose that

{k ∈ N : ∥Uk(x)− UNrε(x)∥ < 2r + ε} ∈ F(I), ∀ε > 0.

Clearly, the set

Krε = {k ∈ N : Uk(x) ∈ [UNrε(x)− (2r − ε), UNrε(x)− (2r + ε)]} ∈ F(I), ∀ε > 0.

Let Irε = [UNrε(x)− (2r − ε), UNrε(x)− (2r + ε)]. If we can fix r > 0 and ε > 0
then we have Krε, K rε

2
∈ F(I), implies Krε ∩ K rε

2
∈ F(I). This further implies

that Iε = Irε ∩ I rε
2
̸= ∅. That is {k ∈ N : Uk(x) ∈ Iε} ∈ F(I). Let diam Iε be the

length of the interval Iε. Clearly, diam Iε ≤ diam Irε.
Continuing in this way, we can obtain a sequence of closed intervals

Irε = A0 ⊃ A1 ⊃ . . . ⊃ Ak ⊃ . . .

with the property that diamAk ≤ 1
2
diamAk−1, k = 2, 3, . . . and {k ∈ N : Uk(x) ∈

Ak} ∈ F(I) for k = 1, 2, . . .. Then there exists some ζ ∈ ∩Ak, k ∈ N such that
ζ = rI − limUk(x). Thus, U = (Uk) ∈ B∞(T ) rI-convergent.

In the following theorem, we explore the relationship between ideal convergence
and rough ideal convergence and give some equivalent conditions.

Theorem 2.4. Let I be an admissible ideal. Then the following are equivalent:

1. (Uk) ∈ CRI(T ),

2. For all k ∈ I there exists (Vk) ∈ CI(T ) such that ∥Uk(x)− Vk(x)∥ ≤ r, r > 0,
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3. For all k ∈ I there exists (Vk) ∈ CI(T ) and (Wk) ∈ C0RI(T ) such that
Uk = Vk +Wk,

4. There exists a subset K = {k1, k2, . . .} of N such that K ∈ F(I) and
limn→∞ ∥Ukn(x)− T (x)∥ < r, where T is the rI-limit of (Uk).

Proof.

(1) ⇒ (2) Let (Uk) ∈ CRI(T ). Then for some r > 0 and ε > 0, there exists some
T such that the set

{k ∈ N : ∥Uk(x)− T (x)∥ ≥ r + ε} ∈ I.

Then by Theorem 1.6, there exists a sequence (Vk) as

Vk =

{
T, ∥Uk(x)− T (x)∥ ≤ r,

Uk + r T−Uk

∥Uk−T∥ , otherwise.

Clearly, (Vk) ∈ CI(T ) and ∥Uk(x)− Vk(x)∥ ≤ r, for all k ∈ N.

(2) ⇒ (3) We are given that for (Uk) ∈ CRI(T ), then there exists (Vk) ∈ CI(T )
such that for all k ∈ I, ∥Uk(x) − Vk(x)∥ ≤ r, where r > 0. Let K = {k ∈
N : ∥Uk − Vk∥ > r}, then K ∈ I. Define a sequence

Wk =

{
Uk − Vk, k ∈ K,

O, otherwise.

Then, (Wk) ∈ CRI
0 (T ).

(3) ⇒ (4) Let A = {k ∈ N : ∥Wk(x)∥ > r + ε
2
}. Then Ac ∈ F(I). Let Ac = K =

{k1, k2, k3 . . .}. Then,
∥Wkn(x)∥ < r + ε

2
.

This implies that
∥Ukn(x)− Vkn(x)∥ < r + ε

2
.

Now,

∥Ukn(x)− T (x)∥ ≤ ∥Ukn(x)− Vkn(x)∥+ ∥Vkn(x)− T (x)∥ < r+ ε
2
+ ε

2
= r+ ε

Therefore, limn→∞ ∥Ukn(x)− T (x)∥ < r.
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(4) ⇒ (1) For ε > 0, we have

{k ∈ N : ∥Uk(x)− T (x)∥ ≥ r + ε} ⊆ Kc ∪ {k ∈ K : ∥Uk(x)− T (x)∥ ≥ r + ε}.

Hence, (Uk) ∈ CRI(T ).

Theorem 2.5. The inclusions C0RI(T ) ⊂ CRI(T ) ⊂ B∞(T ) hold.
Proof. The inclusion C0RI(T ) ⊂ CRI(T ) is obvious. To show CRI(T ) ⊂ B∞(T ),
let (Uk) ∈ CRI(T ). Then there exists some T ∈ B∞(T ) such that the set

{k ∈ N : ∥Uk(x)− T (x)∥ ≥ r + ε} ∈ I.

Now,

∥Uk(x)∥ = ∥Uk(x)− T (x) + T (x)∥ ≤ ∥Uk(x)− T (x)∥+ ∥T (x)∥.

Taking supremum over k from both sides in the above inequality, we obtain, (Uk) ∈
B∞(T ).

We now construct a Lipschitz function with the help of rough ideal convergent
sequence space of bounded linear operators.

Theorem 2.6. The function L : GRI
C (T ) → R defined by L(U) = ∥rI − limU∥, for

a fixed r > 0 is a Lipschitz function and therefore uniformity continuous.
Proof. For a fixed r > 0, we first show that the function L is well defined. Let,
U, V ∈ GRI

C (T ) be such that

U = V ⇒ rI − limU = rI − limV ⇒ ∥rI − limU∥ = ∥rI − limV ∥.

Thus, L is well defined. Then the sets

KU = {k ∈ N : ∥Uk(x)− L(U)∥ ≥ r + ∥U − V ∥} ∈ I, and
KV = {k ∈ N : ∥Vk(x)− L(V )∥ ≥ r + ∥U − V ∥} ∈ I,

where U = (Uk), V = (Vk), and ∥U − V ∥ = supk ∥(Uk − Vk)(x)∥. Clearly,

KU
c = {k ∈ N : ∥Uk(x)− L(U)∥ < r + ∥U − V ∥} ∈ F(I), and
KV

c = {k ∈ N : ∥Vk(x)− L(V )∥ < r + ∥U − V ∥} ∈ F(I).

Hence, K = KU
c ∩KV

c ∈ F(I) is nonempty. For, k ∈ K

∥L(U)− L(V )∥ ≤ ∥L(U)− Uk(x)∥+ ∥Uk(x)− Vk(x)∥+ ∥Vk(x)− L(V )∥
< (2r + 1)∥U − V ∥.
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In the consequent theorems, we investigate some algebraic properties of the
rough ideal convergent sequence spaces of bounded linear operators.

Theorem 2.7. If U = (Uk), V = (Vk) ∈ GRI
C (T ) with UkVk(x) = Uk(x) · Vk(x),

then (U · V ) ∈ GRI
C (T ) but L(U · V ) ̸= L(U)L(V ), where L(U) = ∥rI − limU∥, for

a fixed r > 0.
Proof. For ε = ∥U − V ∥ = supk ∥(Uk − Vk)(x)∥, we have

K1 = {k ∈ N : ∥Uk(x)− L(U)∥ < r + ε} ∈ F(I), and
K2 = {k ∈ N : ∥Vk(x)− L(V )∥ < r + ε} ∈ F(I).

Now,

∥UkVk(x)− L(U)L(V )∥ = ∥Uk(x) · Vk(x)− Uk(x)L(V ) + Uk(x)L(V )− L(U)L(V )∥
≤ ∥Uk(x)∥∥Vk(x)− L(V )∥+ ∥L(V )∥∥Uk(x)− L(U)∥.

Since GRI
C (T ) ⊂ B∞(T ), then there exists some M ∈ R such that ∥Uk(x)∥ ≤ M .

Therefore, we have

∥UkVk(x)− L(U)L(V )∥ ≤ M(r + ε) + ∥L(V )∥(r + ε)

= r(M + ∥L(V )∥) + ε(M + ∥L(V )∥)
= r∗ + ε∗, ∀k ∈ K1 ∩K2.

Theorem 2.8. The spaces CRI
0 (T ) and GRI

C0 (T ) are solid and monotone.
Proof. We shall prove the result for CRI

0 (T ) and the result for GRI
C0 (T ) can be

obtained similarly. Let (Uk) ∈ CRI
0 (T ). Then

{k ∈ N : ∥Uk(x)∥ ≥ r + ε} ∈ I.

Let (αk) be a sequence of scalars with ∥αk∥ ≤ 1 for all k ∈ N. Then,

∥αkUk(x)∥ = ∥αk∥∥Uk(x)∥ ≤ ∥Uk(x)∥, ∀k ∈ N.

Therefore,
{k ∈ N : ∥αkUk(x)∥ ≥ r + ε} ∈ I.

Thus, CRI
0 (T ) is solid and since every solid space is monotone, it follows that CRI

0 (T )
is solid and monotone.

Theorem 2.9. The set GRI
C (T ) is a closed subspace of B∞(T ).

Proof. Let Un = (Uk
(n)) be a Cauchy sequence in GRI

C (T ) such that Uk
(n) → U .

Since Uk
(n) ∈ GRI

C (T ), there exists An such that for some r > 0

{k ∈ N : ∥Uk
(n)(x)− An∥ ≥ r + ε} ∈ I.

We need to show that
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(a) (An) converges to A.

(b) If V = {k ∈ N : ∥Uk(x)− A∥ < r + ε}, then V c ∈ I.

(a) Since (Uk
(n)) is a Cauchy sequence in GRI

C (T ) implies that for a given ε > 0,
there exists n0 ∈ N such that

sup
k

∥Uk
(n)(x)− Uk

(m)(x)∥ < ε
3
,∀n,m ≥ n0.

For a given ε > 0, and some r > 0 consider

Pnm = {k ∈ N : ∥Uk
(n)(x)− Uk

(m)(x)∥ < r+ε
3
},

Pm = {k ∈ N : ∥Uk
(m)(x)− Am∥ < r+ε

3
},

Pn = {k ∈ N : ∥Uk
(n)(x)− An∥ < r+ε

3
}.

Then, Pnm
c, Pn

c, Pm
c ∈ I. Let P c = Pnm

c ∪ Pm
c ∪ Pn

c, where

P = {k ∈ N : ∥Am − An∥ < r + ε}.

Then, P c ∈ I. We choose n0 ∈ P c, then for each n,m ≥ n0, we have

{k ∈ N : ∥Am − An∥ < r + ε} ⊇ {{k ∈ N : ∥Am − Uk
(m)(x)∥ < r+ε

3
}

∩ {k ∈ N : ∥Uk
(n)(x)− Uk

(m)(x)∥ < r+ε
3
}

∩ {k ∈ N : ∥Uk
(n)(x)− An∥ < r+ε

3
}}.

Then (An) is a ρ-Cauchy sequence in R and since R is r-complete, so there
exists some A in R such that An is r-convergent to A for some r > 2−1J(R)ρ,
where J is Jung’s constant [24].

(b) Let ε > 0 be given. Since Uk
(n) → U , then there exists some n0 ∈ N and for

some r > 0 such that

B = {k ∈ N : ∥Uk
(n0)(x)− Uk(x)∥ < r+ε

3
} (∗)

implies Bc ∈ I. The number n0 can be chosen in such a way such that
together with (∗), we have

C = {k ∈ N : ∥An0 − A∥ < r+ε
3
},

such that Cc ∈ I. Let Dc = {k ∈ N : ∥Uk
(n0)(x)− An0∥ ≥ r+ε

3
} then Dc ∈ I.
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Let V c = Bc∪Cc∪Dc, where V = {k ∈ N : ∥Uk(x)−A∥ < r+ ε}. Therefore
for each k ∈ V c, we have

{k ∈ N : ∥Uk(x)− A∥ < r + ε} ⊇ {{k ∈ N : ∥Uk(x)− Uk
(n0)(x)∥ < r+ε

3
}

∩ {k ∈ N : ∥Uk
(n0)(x)− An0∥ < r+ε

3
}

∩ {k ∈ N : ∥An0 − A∥ < r+ε
3
}}.

Thus V c ∈ I.

Therefore, GRI
C (T ) is a closed subspace of B∞(T ).

3. Conclusion
This work is the extension of idea of rough ideal convergence to the sequences

of bounded linear operators. Theorem 2.4 establishes a relationship between rough
ideal convergent sequences and ideal convergent sequences. In theorem 2.6, we have
constructed a Lipschitz function with the help of rough ideal convergent sequence
space of bounded linear operators. Delving into sequences of unbounded linear
operators in future research promises to be intriguing. Furthermore, extending the
concept of rough ideal convergence to sequences of linear operators in spaces of
analytic functions could lead to the discovery of new and intriguing results.
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