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linear spaces, we introduce rough ideal convergence for bounded linear operators.
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1. Introduction and Preliminaries

Convergence of sequences has always remained a subject of interest to the re-
searchers. Several new types of convergence of sequences were introduced and
studied by the researchers and named as usual convergence, uniform convergence,
strong convergence, weak convergence, statistical convergence, ideal convergence
etc. In 2001, the notion of rough convergence was first introduced by Phu [22]
for finite dimensional normed linear spaces. It is a new type of convergence which
involves extending the radius of convergence of a non-convergent but bounded se-
quence.

Let (x;) be a sequence in some normed linear space (X, || - ||) and r be any
non-negative real number. Then (z;) is said to be r-convergent to z., denoted by
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z; — x,, if there exist i. € N such that
i >0 = ||z, — x| <r+e Ve>0.

where r and z, are called the roughness degree and the r-limit point of the sequence
(x;) respectively. It is easy to see that r-limit is not unique and for r = 0 we get
the classical convergence. The set of r-limit points of the sequence (z;) is denoted
by LIM"z; = {,: z; = x,}. LIM"z; is bounded, closed and convex.

Phu also introduced the notion of rough Cauchy sequence and investigated the
dependence of LIM"x; on the roughness degree r. He also defined rough limit
points and degree of roughness and studied basic results for finite dimensional
normed linear spaces. Since then it has attracted a lot of interest from various
scholars. This notion has been extended to various spaces like infinite dimensional
normed linear spaces [24], metric spaces, S-metric spaces, cone metric spaces in
[19], [5] and [6].

The statistical version of rough convergence was introduced by Aytar in [2]. In
[4] he defined the concepts of rough statistical cluster point and rough statistical
limit point of a sequence in a finite dimensional normed space and applied these def-
initions to sequences of functions. Recently, in [7] and [8] Demrici et al. introduced
and studied rough Z, statistical convergence and rough statistical ¢-convergence.

The idea of ideal convergence was given by Kostyrko et al. in [15] which is a gen-
eralization of statistical convergence. Since then, various authors have investigated
its various generalizations and applications in several spaces [9], [25], [26], [28], [20]
etc. Rough ideal convergence was introduced by Pal et al. in [21] and Dundar et al.
[10] gave the idea of rough I-convergence in normed linear spaces independently.
Furthermore, various other related results were introduced and studied in [2], [17],
[4] and [18]. Various attempts have been made to study the algebraic, topological
and geometrical properties of LIM"x; of rough convergent sequences in various
spaces.

Several applications of statistical convergence and ideal convergence have been
discussed in summability theory and approximation theory in [9], [11], [12] and
[27]. Sequences of bounded linear operators are a common occurrence, often asso-
ciated with problems such as Fourier series convergence, interpolation polynomial
sequences, and numerical integration techniques, as seen in [1], [16] and [13]. In
these scenarios, the focus typically revolves around the convergence of operator
sequences, the boundedness of associated norm sequences, or similar characteris-
tics. Several sequences which are non-convergent in usual sense are rough ideal
convergent. Thus, rough ideal convergence can be studied for the sequences of
bounded linear operators. In this paper, we have extended the notion of rough
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ideal convergence to bounded linear operators using the results in [21]. We have
defined some rough ideal convergent sequence spaces of operators. We have also
studied some properties of these spaces when topologized through a norm and in-
vestigated inclusion relations, equivalent conditions, decomposition theorem and
algebraic properties of such spaces.

We now recall some definitions and results from [21] and [14] that will be used
in the next section of this paper.

Definition 1.1. (Ideal) A non-empty collection T of subsets of non-empty set X
1s called an ideal on X if

1. 0 e,
2. IfA,B€Z, then AUB €T and
3. IfA€Z, and BC A, then B € T.

If for each x € X, {x} € Z, then T is called admissible. If T # 0 and T # P(X),
then L is called non-trivial.

Definition 1.2. (Filter) A non-empty collection F of subsets of non-empty set
X is called a filter on X if

1. 0¢F,
2. IfA,BEF, then ANB € F and
3. IfAcF, and AC B, then B € F.

Definition 1.3. (Filter associated with Ideal) Let Z be a non-trivial ideal of
X. The family F(Z) ={M C X:3A € Z,M = X\A} is called filter associated
with ideal.

Definition 1.4. (Ideal Convergence) A sequence (x;) in a normed linear space
(X, || - ||) is said to be T-convergent to L, if for every e > 0, the set

{i eN:||z; = L|| > ¢} € Z.

In this case, we write T — limx; = L.

Definition 1.5. (Rough Ideal Convergence) Let (x;) be a sequence in normed
linear space (X, || - ||) and r be any non negative real number. The sequence (z;) is

said to be rZ-convergent to x, denoted by x; = x, if

{i e N: ||w; —z|| >r+e} eZ,Ve>0,
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where I is non-trivial admissible ideal on N.

Theorem 1.6. Let r be a non-negative real number. Then a sequence x = (x;)
is rIZ-convergent to x, if and only if there exists a sequence y = (y;) such that
Z—limy =z, and |x; — y;|| < r, fori e N.

Let X and Y be any two normed linear spaces. We denote the set of all linear
operators from X to Y by

L(T)={T = (Ty): Tx: X =Y, is linear for each k € N}.

Definition 1.7. (Bounded Linear Operator) A linear operator T: X — Y is
satd to be bounded, if there exists a real M > 0 such that

|Tz|| < M|z|, Vo € X.

Let Boo(T) be the normed space of sequences of all bounded linear operators
from a normed spaces X to Y with norm defined by

7)) = sup | Ti@)].

The space Bo(T) is a Banach, if Y is a Banach space. Throughout, O and I
represent zero and identity operators, respectively.

Definition 1.8. (Ideal Convergence of Sequence of Operators) Let Z be an
ideal. The a sequence U = (Uy) € Boo(T) is said to be I-convergent to an operator
T, if for every e > 0, the set

{k e N: ||Ti(x) — T(x)|| > e} € T.

In this case, we write T —lim Ty, =T
Definition 1.9. Let X and Y be two normed linear spaces. A sequence (Uy) of
operators Uy, € Boo(T) is said to be

1. Uniformly convergent, if (Uy) converges in the norm on By (T) i.e. ||Uy —
T|| — 0.

2. Strongly convergent, if (Uxx) converges strongly in Y for every x € X i.e.
|\Ux(z) = T(z)|| = 0, for every x € X.

3. Weakly convergent, if (Ux(z)) converges weakly in'Y for every x € X i.e.
\h(Upz) — h(Tx)| — 0, for everyx € X and h €Y.
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Definition 1.10. (Sequence Space) Any subspace A\ of a linear space of se-
quences A is called sequence space.

Definition 1.11. (Solid Sequence Space) A sequence space P of operators is
said to be solid (or normal), if (axUx) € P whenever U, € P and for any sequence
() of scalars with |ay| < 1, for all k € N and is said to be monotone, if it contains
the canonical preimages of its step space.

Remark 1.12. Fvery solid space is monotone.

Definition 1.13. (Lipschitz Function) Let X be any non-empty space. A func-
tion f: X — R is said to be a Lipschitz if it satisfies Lipschitz condition,

|f(x) = f(y)| < K|z -y,

where K is known as the Lipschitz constant.

Throughout this paper, let Z be a non-trivial admissible ideal on N and r be a
non-negative real number. We consider the operators Uy, for each & € N from the
normed spaces X = R to Y = R over the field R.

Motivated by the ideal convergence of sequence of operators, we define rough
ideal convergence of sequence of operators.

Definition 1.14. (Rough Ideal Convergence of Sequence of Operators) Let
Z be an ideal. A sequence U = (Uy) € Boo(T') C L(T) is said to be rZ-convergent
to an operator T, if for r > 0 and € > 0, the set

(ke N: |Up(z) — T(x)|| > r + ¢} € T.

In this case, we write r7 —lim U, =T
Now we introduce the following rough ideal convergent classes of sequences of
operators.

CH(T) = {U = (Uy) € Boo(T): {k € N: ||Up(z) — L(2)|| > r + ¢} € T,
for some L € L(T),r > 0}, and
CH(T) = {U = (Up) € Boo(T): {k € N: |Up(z)|| > 7 +e} € Z,r > 0}.
We also denote
GFH(T) = Boo(T) NC™(T), GFH(T) = Boo(T) NC{H(T), and
CHT) = {U = (Uy) € Boo(T): {k € N: |Uy(z) — L(2)|| > €} € T,
for some L € L(T)}
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2. Main Results

This section is devoted to the study of some algebraic properties of rough ideal
convergent classes of sequences of bounded linear operators, which we introduced
in the previous section. We have also explored Cauchy like criteria for rough
ideal convergent sequences of bounded linear operators and proved some equivalent
conditions.

We first show that the classes of rough ideal convergent sequences of bounded
linear operators are vector spaces over the field of R.

Theorem 2.1. The classes C™(T),C{™(T), G (T) and GFH(T) are linear spaces
over R.

Proof. First we prove the space CZ(T') is linear. Let U = (Uy),V = (V) € CFE(T)
and «, 8 be scalars, then for some ry,ry > 0 and for given £ > 0, there exist some
Ty, T, € L(T) such that

{k e N: |Up(z) = Th(2)|| =71+ 5} {k € Nt [[Vi(2) — Ta(z)|| = ra + 5} € L.
Let r = max{ry, o}, then

{k eN: [Up(z) = Ta(@)[| = 7+ 5}, {k € N: |[Vilz) = Tao(2)| = 7+ 5} € T,
Let
Py ={keN: |[Uy(z) —-T1(2)|| <r+5}, P = {k € N: [|[Vi(2z) — To(z)|| < r+5} € F(I),
are such that P, P, € Z. Then
Py ={k e N: [[(alUy)(z) + (6Vi)(x) — (aTh = BT2)|| < 2r + e} 2 (PN P,) € F(I)

Thus, aUy + SV}, is rough ideal convergent, for all scalars «, 8 and (Uy), (Vi) €
CRL(T). Therefore, C'*(T) is linear. Similarly, we can prove that spaces C&(T),
GEH(T) and GI(T) are linear.

Let us now equip the linear spaces G5 (T') and GF*(T') with a norm.

Theorem 2.2. The spaces G&(T) and GFH(T) are normed linear spaces normed

by
17, = Sl;p||Tk(x)||~

Proof. Proof omitted.
We now establish a relationship between rough ideal convergent sequences of
bounded linear operators and rough Cauchy criteria.
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Theorem 2.3. A sequence U = (Uy) € Boo(T) rZ-converges if and only if for
r >0 and e > 0, there exists a set N,. € N such that

(k€ N: |Up(z) — Un,.(2)|| < 2r + )} € F(T).

Proof. Let U= (U;) € Bo(T') be rZ- convergent for some r > 0 and let T" be the
rZ-limit of (Uy). Then the set,

B,. = {k € N: |U(z) = T(z)|| <r+%} € F(T), Ve > 0.
Fix an N,. € B,.. Then we have
[Uk(z) = Un,.(@)|| < |Uk(z) = T(2)|| + |Un,.(z) =T @) <r+§+r+5=2r+¢

which holds for all & € B,.. Thus, {k € N: |Ux(x) — Un,.(z)|| < 2r + ¢} € F(I).
Conversely, suppose that

{k e N:||Uy(x) — Un,.(z)|| < 2r + e} € F(Z), Ve > 0.
Clearly, the set
K,. ={k € N: Ug(x) € [Un,.(x) — (2r —e),Un,.(x) — (2r + )]} € F(Z), Ve > 0.

Let I,. = [Un,.(x) — (2r —e),Up,.(z) — (2r +¢)]. If we can fix r > 0 and ¢ > 0
then we have K., Kre € F(Z), implies K,. N K:= € F(Z). This further implies
2

that I. = I, N Ix= # 0. That is {k € N: Uy(z) € I.} € F(I). Let diam I. be the
length of the interval I.. Clearly, diam I. < diam I,..
Continuing in this way, we can obtain a sequence of closed intervals

IL,.=A DA D...DA.D...

with the property that diam Ay < 5 diamAg_1,k = 2,3,... and {k € N: Uy(z) €
Ap} € F(Z) for k = 1,2,.... Then there exists some ¢ € NAg, k € N such that
¢ =1Z —lim Uy (z). Thus, U= (U;) € Bx(T) rZ-convergent.

In the following theorem, we explore the relationship between ideal convergence
and rough ideal convergence and give some equivalent conditions.

Theorem 2.4. Let Z be an admissible ideal. Then the following are equivalent:
1. (Uy) € CHE(T),
2. For all k € T there exists (V},) € CE(T) such that |Uy(z) — Vi(z)|| < r,r >0,
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3. For all k € T there exists (Vi) € CEH(T) and (Wy) € Co™(T) such that
U = Vi + Wi,

4. There exists a subset K = {ky,ko,...} of N such that K € F(Z) and
lim, o0 [|Uk, () — T'(2)|| < r, where T is the rZ-limit of (Uy).

Proof.

(1) = (2) Let (Ug) € C*(T). Then for some r > 0 and & > 0, there exists some
T such that the set

{k e N: |Ug(z) = T(x)|| >r+e} €T
Then by Theorem 1.6, there exists a sequence (V}) as

Voo {n |Uk(@) = T} <,

U, —|—7“ I=Uk_ otherwise.
k 1U:—T1

Clearly, (V;) € CE(T) and ||Ug(x) — Vi(2)| < r, for all k € N.

(2) = (8) We are given that for (Uy) € C*(T), then there exists (Vi) € C*(T)
such that for all k € Z, ||Ux(z) — Vi(z)|| < r, where r > 0. Let K = {k €
N: ||Uy — Vi|| > r}, then K € Z. Define a sequence

U, — Vi, ke K,
Wy = .
0, otherwise.
Then, (Wk) € Cé%I(T)

(3) = (4) Let A= {k e N: |[Wi(2)|| >r+5}. Then A° € F(Z). Let A°=K =
{k’l, k’g, k’3 - } Then,
W, (@) <7+ 3.

This implies that
Ve (2) = Vi @)]] < 7+ 5.

Now,
[Uk,, (2) = T(2)[| < [[Uk, (2) = Vi, ()| + Ve, () =T()| <7 +5+5 =7 +e

Therefore, lim,, o [|U, (x) — T'(2)|| < 7.



Rough Ideal Convergent Sequence Spaces of Bounded Linear Operators 305

(4) = (1) For € > 0, we have
{keN: ||Up(zx) = T(x)|| >r+e} CKU{k € K: |Ug(x) —T(x)|| >r+e}.
Hence, (Uy,) € CFH(T).

Theorem 2.5. The inclusions Co™ (T) C C*(T) C Buo(T) hold.
Proof. The inclusion Co"™(T') C C**(T) is obvious. To show C*(T) C Bu(T),
let (Uy,) € C*E(T). Then there exists some T' € By, (T) such that the set

{k e N: |[Up(x) = T(x)| >r+e} €.
Now,
1U(2)]| = [[Un(z) = T(z) + T ()| < |Uk(z) = T(2)]| + |17 ()]

Taking supremum over k from both sides in the above inequality, we obtain, (Uy) €
Boo(T).

We now construct a Lipschitz function with the help of rough ideal convergent
sequence space of bounded linear operators.

Theorem 2.6. The function L: GIF(T) — R defined by L(U) = ||[rZ —1lim U]|, for
a fived r > 0 is a Lipschitz function and therefore uniformity continuous.

Proof. For a fixed r > 0, we first show that the function £ is well defined. Let,
U,V € GEE(T) be such that

U=V=rI-lmU=rI—-1lmV = |rZ-limU| = |rZ —limV|.
Thus, £ is well defined. Then the sets

Ky = {k € N: |[Up(z) — LU)|| =7+ |U = V||} € Z, and
Ky ={k e N: [[Vi(z) = L(V)|| = r + U = V|[]} € Z,

where U = (Uy),V = (Vi), and | U — V|| = supy, ||(Ux — Vi) (z)||. Clearly,

Ky© = {k € N: |[Us(z) — LU)|| <7+ |U = V|} € F(T), and
Ky ={k e N: [|[Vi(z) = L(V)|| <7+ [|[U =V} € F(D).

Hence, K = Ky°N Ky© € F(Z) is nonempty. For, k € K

ILU) = LV)|| < 1£U) = Up()|| + [[Uk(z) = Vi(2)]| + [|Vi(z) = LV
<@ +D|U -V
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In the consequent theorems, we investigate some algebraic properties of the
rough ideal convergent sequence spaces of bounded linear operators.

Theorem 2.7. IfU = (Up),V = (Vi) € GEH(T) with UpVi(z) = Ui(x) - Vi(x),
then (U-V) € GIE(T) but LU -V) # L(U)L(V), where L(U) = ||[rZ —1lim U]||, for
a fived r > 0.
Proof. For e = ||[U — V|| = supy, |[(Ux — Vi)(x)||, we have
={k e N: |Uy(x) — LU)|| <r+e} € F(Z), and
Ky ={k eN: ||[Vk(z) — LV)|| <r+e} € F().
Now,
[UkVi(z) = LIO)LV)|| = [|Uk(z) - Vi(z) = Up(2)L(V) + Ur(x) L(V) = LIU) LV
< NUk(@) V() = L)+ [V Uk() — LU)]]-
Since GI(T) C Boo(T), then there exists some M € R such that ||U(z)|| <
Therefore, we have
1UkVi(z) = LW)LV)|| < M(r +¢) + |IL(V)[|(r +¢)

=r(M+[[LV)]) + (M + [I£V)]])

:T*+€*, Vk € KlmKQ.
Theorem 2.8. The spaces C{*(T) and GFF(T) are solid and monotone.

Proof. We shall prove the result for C;(T) and the result for G&*(T') can be
obtained similarly. Let (Uy) € C{#(T'). Then

{k e N: ||Ug(x)|| >r+e} el
Let (ax) be a sequence of scalars with ||ay|| <1 for all & € N. Then,
lerUs ()| = llew[[[|Uk (@) || < [|Ux(2)]l, VE € N.

Therefore,
{k € N: ||axUk(z)|| > r+e} € T.

Thus, C{(T) is solid and since every solid space is monotone, it follows that CJ* (T)
is solid and monotone.

Theorem 2.9. The set G (T) is a closed subspace of Boo(T).
Proof. Let U" = (U,"™) be a Cauchy sequence in GF(T') such that U,™ — U.
Since U™ € GF(T), there exists A, such that for some r > 0

{k e N: UM (z) — A,|| >r+e} €.
We need to show that
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(a) (A,) converges to A.
(b) If V ={k € N: ||Ug(x) — A|| <7+ e}, then V¢ € T.

(a) Since (U,™) is a Cauchy sequence in GEL(T) implies that for a given € > 0,
there exists ng € N such that

sup [V (@) = U™ (@)] < §.¥n.m > no.

For a given € > 0, and some r > 0 consider
Pom = {k € N: | U™ (2) = U™ ()] < 523,
Py = {k € N: [|U"™(2) — A, || < ==1,
P,={keN: ||Uk(")(x) — Al < %5}
Then, P, P.° P, €. Let P° = P,,,U P,,°U P,, where
P={keN:|A, - A, <r+e}.
Then, P¢ € Z. We choose ny € P¢, then for each n, m > ngy, we have
{keN: |4, — A <r+e} 2 {{k eN: |4, — U (2)]| < ==}
N {k e N: UM (2) = G (2)|| < 7523
N{k € N: |0 (2) — 4, < =3}

Then (A,) is a p-Cauchy sequence in R and since R is r-complete, so there
exists some A in R such that A, is r-convergent to A for some r > 271J(R)p,
where J is Jung’s constant [24].

(b) Let € > 0 be given. Since U™ — U, then there exists some ny € N and for
some 7 > 0 such that

B ={keN: U™ (z) - Uy(z)| < £} (%)

implies B¢ € Z. The number ng can be chosen in such a way such that
together with (x), we have

C ={keN:|A,, — 4] < ==},

such that C° € Z. Let D = {k € N: ||U,™)(z) — A, || > £} then D° € T.
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Let V¢ = B°UC°UD*, where V = {k € N: ||Ux(x) — A|| < r+¢e}. Therefore

for each k € V¢, we have

{k € N: |U(z) — A|| <r+e} 2 {{k € N: |Up(z) — U, (2)] < =£=}
N{k e N: ||Uk(”°)(x) — Al < %}
N{k € N: [|A,, — A < ==}

Thus Ve e 7.

Therefore, G (T) is a closed subspace of By (T).

3. Conclusion

This work is the extension of idea of rough ideal convergence to the sequences
of bounded linear operators. Theorem 2.4 establishes a relationship between rough
ideal convergent sequences and ideal convergent sequences. In theorem 2.6, we have
constructed a Lipschitz function with the help of rough ideal convergent sequence
space of bounded linear operators. Delving into sequences of unbounded linear
operators in future research promises to be intriguing. Furthermore, extending the
concept of rough ideal convergence to sequences of linear operators in spaces of
analytic functions could lead to the discovery of new and intriguing results.

Acknowledgement
We would like to thank the referees for their valuable suggestions which im-
proved the presentation of this paper.

References

[1] Arvo, J., Linear operators and integral equations in global illumination,
https://api.semanticscholar.org/CorpusID:54684342, (2006).

[2] Aytar, S., Rough statistical convergence, Numerical Functional Analysis and
Optimization, 29 (2008), 291-303.

[3] Aytar, S., The rough limit set and the core of a real sequence, Numerical
Functional Analysis and Optimization, 29 (2008), 283-290.

[4] Aytar, S., Rough statistical cluster points, Filomat, 31 (2017), 5295-5304.

[5] Banerjee, A. K. and Mondal, R., Rough convergence of sequences in a cone
metric space, Journal of Analysis, 27 (2019), 201-224.



Rough Ideal Convergent Sequence Spaces of Bounded Linear Operators 309

(6]

[10]

[11]

[12]

[13]

[15]

[16]

[17]

[18]

Debnath, S. and Rakshit, D., Rough convergence in metric spaces, New

Trends in Analysis and Interdisciplinary Applications, Springer International
Publishing, (2017), 449-454.

Demirci, I. A., Kisi, O. and Gurdal, M., Some results on rough statisti-
cal ¢-convergence for difference double sequences, Journal of Mathematical
Analysis, 14(2) (2023), 1-11.

Demirci, I. A., Kisi, O. and Gurdal, M., Rough Z,-statistical convergence in
cone metric spaces in certain details, Bulletin of Mathematical Analysis and
Applications, 15(1) (2023), 7-23.

Duman, O., A Korovkin type approximation theorems via I-convergence,
Czechoslovak Mathematical Journal, 75(132) (2007), 367-375.

Dundar, E. and Cakan, C., Rough I-convergence, Demonstratio Mathematica,
47 (2014), 638-651.

Fridy, J. A. and Orhan, C., Lacunary statistical summability, Journal of
Mathematical Analysis and Applications, 73 (1993), 497-504.

Gadjiev, A. D. and Orhan, C., Some approximation theorems via statistical
convergence, Rocky Mountain Journal of Mathematics, 32(1) (2002), 129-138.

Jachymski, J., Convergence of iterates of linear operators and the Kelisky —
Rivlin type theorems, Studia Mathematica, 195(2) (2009), 99-112.

Khan, V. A. and Shafiq, M., On I-Convergence of Sequence of Bounded Linear
Operators defined by Modulus Function, Journal of Mathematical Analysis,
5 (2014), 12-27.

Kostyrko, P., Salat, T. and Wilczyski, W., I- Convergence, Real Analysis
Exchange, 26 (2000), 669-686.

Kreyszig, E., Introductory functional analysis with applications, John Wiley
and Sons, Inc. New York-Chichester-Brisbane-Toronto, 1978.

Malik, P. and Maity, M., On rough convergence of double sequence in normed
linear spaces, Bulletin of the Allahabad Mathematical Society, 28 (2013), 89-
99.

Malik, P. and Maity, M., On rough statistical convergence of double sequences
in normed linear spaces, Afrika Mathematica, 27 (2016), 141-148.



310 South FEast Asian J. of Mathematics and Mathematical Sciences

[19] Mondal, R. and Khatun, S., Rough convergence of sequences in S- metric
space, arXiV :2204.04696v2, (2022).

[20] Nabiev, A., Pehlivan, S. and Gurdal, M., On TI-Cauchy sequences, Taiwanese
Journal of Mathematics, 11(2) (2007), 569-576.

[21] Pal, S.K., Chandra, D. and Dutta, S., Rough ideal convergence, Hacettepe
Journal of Mathematics and Statistics, 42 (2013), 633-640.

[22] Phu, H. X., Rough convergence in normed linear spaces, Numerical Func-
tional Analysis and Optimization, 22 (2001), 201-224.

(23] Phu, H. X., Rough continuity of linear operators, Numerical Functional Anal-
ysis and Optimization, 23 (2002), 139-146.

[24] Phu, H. X., Rough convergence in infinite dimensional normed linear spaces,
Numerical Functional Analysis and Optimization, 24 (2003), 285-301.

[25] Sahiner, A., Gurdal, M. and Yigit, T., Ideal convergence characterization of
the completion of linear n-normed spaces, Computers and Mathematics with
Applications, 61(3) (2011), 683-689.

[26] Savas, E. and Gurdal, M., I-statistical convergence in probabilistic normed
spaces, University Politehnica of Bucharest Scientific Bulletin Series A, Ap-
plied Mathematics and Physics, 77(4) (2014), 195-204.

[27] Schoenberg, 1. J., The integrability of certain functions and related summa-
bility methods, American Mathematical Monthly, 66 (1959), 361-375.

28] Yamanci, U. and Gurdal, M., On lacunary ideal convergence in random-
normed space, Journal of Mathematics, 2013 (2013), 1-8.



